Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Heliyon ; 9(6): e16284, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2325049

ABSTRACT

Diosmin (DIO) and hesperidin (HSP) are important classes of flavonoid glycoside effectively used to prevent comorbid diseases that are commonly associated with COVID-19. An innovative, green, ccurate, effective, cost, and timeless spectrophotometric strategy was established to analyze such challengeable mixture in a co-formulated tablet namely Diosed C® tablets that comprises DIO, HSP and vitamin C (VIT. C) in the ratio of (450 mg: 50 mg: 100 mg) necessary for prevention and treatment of COVID-19. Vitamin C was resolved through physical extraction using de-ionized water while DIO and HSP were extracted via spectrophotometric methods using two different solvents [0.1 M NaOH or solvent blend consisting of DMSO and methanol (1:1)]. Mathematical filtration technique is successfully applied to recover the parent spectra of both DIO and HSP via three methods which are absorbance resolution (AR), Induced absorbance resolution (IAR) and ratio extraction (RE). VIT. C was successfully analyzed in de-ionized water using its maxima at 266.0 nm in a linearity range 2.0-20.0 µg/mL, DIO was effectively determined in 0.1 M NaOH at 372.0 nm in a linearity range of 7.0-70.0 µg/mL as well as in solvent blend at 344.0 nm in linearity range of 5.0-55.0 µg/mL while HSP was accurately analyzed in 0.1 M NaOH at 240.0 nm in linearity range of 3.5-50.0 µg/mL as well as in solvent blend at 285.0 nm in linearity range of 4.0-50.0 µg/mL. Satisfactory results were accomplished when conducting ICH guidelines for assuring the methods validation. Comparative study was introduced in the analysis of such critical combination and was prosperously devoted for the effective analysis of pharmaceutical dosage form. The proposed extraction pathways undergo the guidelines of green analytical chemistry using Analytical Eco-Scale (AES), AGREE and GAPI greenness assessment tools which confirmed their eco-friendly nature with priority to 0.1 M NaOH. The obtained results of the suggested methods were set side by side with those of official/reported methods statistically and show satisfactory implications. The presented methods were simple, affordable, smoothly applicable and their results were acceptable that enhances their usage and application in the quality control laboratories.

2.
Natural Products Journal ; 13(4):11-41, 2023.
Article in English | EMBASE | ID: covidwho-2298289

ABSTRACT

Hyssopus officinalis is a traditional medicinal plant that belongs to the family Lamiaceae, which has been used for centuries for various purposes like carminative, expectorant, and cough reliever. It has been used for the treatment of numerous diseases in patients such as ulcers, asthma, jaundice, leprosy, dropsy, bronchitis, COPD, diabetes, AIDS, bacterial and fungal infections as an herbal remedy due to its fewer side effects and is more efficacies than other traditional medicine. Major classes of chemical compounds found in H. officinalis essential oil are bicyclic monoter-penes, monoterpenoids, acyclic monoterpenes, phenolic monoterpenoids, monocyclic monoterpenes, monocyclic sesquiterpenes, tricyclic sesquiterpenes, bicyclic sesquiterpenes, tricyclic sesquiterpe-noids, straight chain saturated hydrocarbons. Some of the major chemical constituents present in the H. officinalis are beta-pinene, alpha-pinene, 1, 8-cineole, apigenin, diosmin, caffeic acid, rosmarinic acid, cis-pinocamphone, trans-pinocamphone, iso-pinocamphone, pinocarvone, which are responsible for its various pharmacological activity. Various studies have been performed on the pharmacological activity of its extract, such as antioxidant, antimicrobial, anti-diabetic, anticancer, antiviral, anti-inflammatory, analgesic, anti-leishmanial, anthelmintic, anti-protozoal, and anti-anxiety. Recently, it is used as an anticancer agent and has been demonstrated by studying its cytotoxic and apoptotic effects on breast cancer and colon cancer cells. It is used as a potent antibacterial and antifungal agent being studied on the antibiotic-resistant bacterial and fungal strains recently, which can be further useful in developing herbal medicine against AMR. It is an excellent natural antioxidant due to the presence of polyphenolic compounds, and H. officinalis is used in various food industries as a source of natural antioxidants, which has minimum side effects as compared to artificial antioxi-dants. Furthermore, the pharmacological activity of these individual chemical constituents in H. officinalis extract still needs to be investigated for identifying the effectiveness of this plant in the natural treatment of various diseases. This review aims to collect various data regarding the traditional herbal plant hyssop (Hyssopus officinalis), including its photochemistry, chemical structures of the phyto-constituents and pharmacological profile, along with all the pharmacological models. This plant has significant importance in the health industry, so further studies are required on its effective usage against various emerging health problems, including COVID-19, cancer, diabetes, AMR.Copyright © 2023 Bentham Science Publishers.

3.
Journal of the Mexican Chemical Society ; 66(3):15, 2022.
Article in English | Web of Science | ID: covidwho-1988937

ABSTRACT

The pandemic COVID-19, caused by the organism severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the family Coronoviridae has become a serious global healthcare crisis. The biggest demand of the present time is to develop efficacious medication for the treatment of SARS-CoV-2. In the present study, we performed the interaction of 50 flavonoids selected from the Pubchem database, with five efficacious protein targets for SARS-CoV-2: main protease (Mpro), spike glycoprotein-receptor binding domain (SGp-RBD), RNA-dependent RNA polymerase (RdRp), angiotensin converting enzyme-2 (ACE-2) and non-structural protein15 (NSP15, an endonuclease). All the work involve in the present study was accomplished by using Maestro 12.4 (Schrodinger Suite) to obtain the docking scores and ADME-T study result of selected ligands with the five effective target proteins of SARS-CoV-2. Molecular docking-based results indicated that diosmin has the most favorable docking scores-10.16,-11.52,-9.75,-11.25 and-10.25 kcal/mol for the Mpro, SGp-RBD, ACE-2, RdRp and NSP-15 protein targets and had acceptable drug suitability as a therapeutic agent against COVID-19. The structure of this compound can be further useful to medicinal chemists, pharmacologists, and clinicians for efficiently discovering or developing effective drugs to cure COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL